
Artificial Intelligence for the green 
transition: predictive maintenance 
applied to photovoltaic plants

A success case developed with SAIDEA Srl and 
Eurac Research
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Client company: SAIDEA
The client company of the current case 
study is SAIDEA Srl, a business that offers 
software development and ICT-outsourcing 
services. SAIDEA is a partner of the project 
“EU FESR1128 PV 4.0 - Use of Industry 4.0 
and Internet of Things logic in the photovoltaic 
sector”, coordinated by the Institute for 
Renewable Energy at  Eurac Research , whose 
aim is optimizing maintenance activities on 
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plants and photovoltaic parks.

As part of the project, SAIDEA needed 
to appoint an external supplier for the 
development and integration of predictive 
maintenance models based on Artificial 
Intelligence; U-Hopper was chosen thanks 
to its recognized excellence in the field of 
predictive modeling.
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Client: SAIDEA Srl
Application field: renewable energy, predictive maintenance 
Expertise: Artificial Intelligence / Machine Learning

Sum-up

https://www.saidea.it/
https://www.eurac.edu/en/institutes-centers/institute-for-renewable-energy
https://www.eurac.edu/en/institutes-centers/institute-for-renewable-energy
https://www.eurac.edu/en
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The photovoltaic sector is playing a main 
role in the current energy transition path, 
which is occurring at national, European and 
global level. One of the main aspects that 
has triggered the adoption of large-scale 
solar energy plants is undoubtedly the cost 
reduction of initial investments (costs of cell 
panels and inverters, above all).

At the same time, though, increased 
competition has led to a drop in revenue 
margins for operations and maintenance 
(O&M) engineers. Indeed, maintenance 
activities in a photovoltaic plant involve 
high costs and require time: the higher the 
number of failures or breakdowns, the more 
challenging become maintenance routine 
operations.

Being able to prevent failures and 
breakdowns, such as an unexpected drop of 
energy production for an extended period of 
time, allows prompt intervention. As a result, 
technical downtimes can be reduced, while 
associated costs (i.e. loss of earnings) can be 
minimized.

This modus operandi is called predictive 
maintenance and it is today a fundamental 
pillar of the Industry 4.0 paradigm; it is 
based on Internet-of-Things technologies 
for gathering data generated by high-tech 
devices, and Artificial Intelligence algorithms 
for processing that data and distilling valuable 
insights. The global predictive maintenance 
market is expected to grow up to $12.3 
billion by 2025 (source: Capgemini).

© All rights reserved, U-Hopper

Challenge

https://www.capgemini.com/us-en/research/predictive-asset-maintenance/
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“To enhance the Decision Support System of our Enterprise Management System 
(EMS) Antares, we wanted to create an algorithm for predictive analysis of the plant. 
Following our needs and specifications, U-Hopper developed an effective model for 
predictive maintenance, which can be integrated into Antares and makes our EMS more 
comprehensive.”

Filippo Segata
Project Manager

Solution
The solution developed by our team consists 
of a platform, integrable with SAIDEA’s 
Enterprise Management System (EMS) 
called Antares, collecting and analyzing 
data generated by IoT sensors installed 
on photovoltaic plants with the aim of 
monitoring their operation and notifying any 
anomaly.

The algorithm at the heart of the platform is 
based on a Machine Learning model,  whose 
training has been run on a rich dataset, 
provided by Eurac Research, containing more 
than four years of historical data: a total of 2.5 
million measurements taken at 10-minute 
intervals, from 2014 to 2018.

Given the high level of competitiveness in 
the O&M sector, the opportunity of relying 
on predictive maintenance tools and services 
makes the difference between growing 
on the market and fighting for survival. 
Being aware of the advantages that can be 
gained thanks to these tools, SAIDEA has 

appointed U-Hopper to create a series of 
methods and models - based on Artificial 
Intelligence - aimed at autonomously 
predicting anomalies in photovoltaic 
plants, and communicate them promptly 
to the maintenance team in order to avoid 
breakdowns.

https://www.antares.uno/
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1. Dataset analysis
by making use of statistics and data representations, we identified a few dozen 
examples of both atypical and normal behaviors; to allow the ML algorithm 
to differentiate between these two status categories, it was also necessary to 
identify the relevant and functional information to feed the algorithm with;

2. Data annotation

given that initial data was not associated with labels distinguishing the case 
of “atypical” from the case of “normal behavior”, this second phase consisted 
in a manual annotation of the dataset; the aim was to identify the rules for 
classifying the two cases on the basis of statistical analysis;

3. Development of the AI model and its training

we created a Machine Learning (ML) model that could autonomously detect 
possible failures by following the rules defined in Phase 2;

4. Software engineering

we engineered the ML model and built the necessary APIs to facilitate its 
integration with the existing platform;

5. Integrations and implementation

we finally integrated the solution with the SAIDEA platform as well as the 
software for data acquisition from the plants, and we implemented it on the 
cloud.

The process for developing the solution was divided into five phases:

We will now focus on the first three phases, characterized by a strong data science component.
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Phase 1. Dataset analysis

The dataset at disposal consisted of an 
enormous amount of data referring to the 
health status of several inverters, i.e. devices 
on photovoltaic panels that convert solar 
energy from direct into alternating current.

However, since the dataset was not 
annotated2, the initial analysis needed to be 
based on the observation of graphs such as 
the one shown below which represents an 
ideal environment for a photovoltaic plant: a 
sunny day with no clouds. 

In principle, the greater the radiation solar 
panels receive from the Sun, the greater the 
energy they should produce. In this case, we 
can observe that the current produced by the 
inverter (represented by black dots) faithfully 
follows the orange curve (which instead 
refers to the irradiance, i.e. the energy that 
solar panels receive from the Sun), therefore 
indicating the correct functioning of the 
plant. 

2 data does not entail information about its meaning - i.e. data does not provide any hints whether it refers to a 
normal or atypical situation. Learn more by reading this article on our blog. 
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https://www.u-hopper.com/blog/en/data-annotation-machine-learning/
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The graph below represents yet another 
example of a sunny day without clouds - 
and one would expect the same results in 
terms of plant functioning. However, we 

can observe a few anomalies, i.e. a dozen 
of measurements referring to the power 
generated by the inverters (black dots) differ 
significantly from the irradiance curve. 

Phase 2. Data annotation

Taking into account the analysis and 
considerations gathered during Phase 1, the 
team created a series of heuristics which, 
if combined with each other, could shed 
light on the health status of each inverter 
contained in the dataset. The result of this 

operation is shown in the next figure.
In this way, we obtained an annotated 
dataset and laid the groundwork for creating 
a Machine Learning model that could 
autonomously classify the health rating 
status of each inverter.
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Why should we train a ML model to recognize the health status of an 
inverter, while we have been able to do it manually by creating a set 
of ad-hoc rules?

The creation of heuristics is the result of a “combined analysis” that compares data generated by an 
inverter with data generated by other inverters, in order to identify any atypical behavior. In addition, 
it is based on a historical series of observations which allows, for example, to identify downtimes.

A Machine Learning model, instead, is designed to analyze continuous flows of data relating to the 
health status of an inverter; in other words, once the ML model learns from the heuristics how to 
classify certain situations, it is able to analyse autonomously and in real-time each single inverter, 
without requiring a comparison with the others or waiting for some time to ensure that a certain 
measurement actually refers to a real downtime; in fact, a ML model is able to detect straightaway any 
sign of upcoming atypical behaviors.

On the one hand, this makes a ML model a quite flexible tool, since it can be used in systems relying 
on just one single inverter (i.e. where it is impossible to compare its performance against that one of 
other inverters). On the other hand, it allows timely maintenance activities, since there is no need to 
take multiple and consecutive measurements to establish whether a given data represents an atypical 
behaviour or not.

Phase 3. Development of the AI model and its training

In principle, a Machine Learning model is a 
tool which, upon receiving an input, returns 
an output with predefined characteristics. 
In this specific case, the input is composed 
by a list of features regarding the weather 
conditions and the inverter situation at a 

given time, while the output is the probability 
that this inverter is not working correctly: if 
this probability exceeds a certain threshold, 
the inverter’s behavior is classified as atypical 
(and therefore the inverter will require 
inspection / maintenance).
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The internal structure of the ML model 
depends on the type of the chosen algorithm. 
For SAIDEA, we decided to use the so-
called Neural Networks, which are currently 
considered the state of the art in the field of 
Machine Learning.

In order to accurately calculate this 
probability, it was necessary to properly 
configure and calibrate the structure of the 
Neural Network; in other words we proceeded 
to train the model, whereby each record 
of the annotated dataset was processed to 
obtain the corresponding probability that the 
system was facing an atypical behaviour.

To achieve this all labels of the annotated 
dataset (normal / atypical behavior) were 
converted into a numerical format, i.e. a 
probability, so that they could be processed 
by the Neural Network: when the behavior 
of an inverter was labelled as normal, a 
probability of 0 was assigned, while those 
corresponding to atypical behaviors were 
assigned with a probability of 1. These 
probabilities represent the ground truth, i.e. 
the correct probability that each inverter is 
facing a malfunction at a precise moment in 
time. 

As a second step, records deprived of the 
ground truth - i.e. containing just the weather 
conditions and electrical variables -  were 
given as inputs to the Neural Network. At this 
point, the ground truth was compared to the 
model output probability. On the basis of the 
correctness (or incorrectness) of predicted 
results, the Neural Network parameters were 
“smartly” updated, with the aim of replicating 
them as close as possible to the probabilities 
obtained through the heuristics. 

This procedure is repeated a few hundreds 
of times, for each record in the dataset, until 
predictions stabilize. The final result is a 
trained ML model, which we can describe 
as a tool that, based on the experience 
gained during the training process, is able 
to recognize the occurrence of atypical 
behaviours in the system with a high 
degree of reliability. This model was finally 
integrated into the existing Antares platform, 
to allow O&M operators to arrange timely 
maintenance interventions on the plant.
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Conclusion
Starting from 2020, in conjunction with 
the outbreak of the Covid-19 pandemic, the 
energy transition already well-underway 
started showing signs of acceleration. This 
happened partly as a consequence of political 
strategy changes in some countries, as in the 
U.S.A., and partly due to several constraints 
imposed by the European Commission on 
the Next Generation EU: at least 37% of 
total funds addressed to each European 
country will have to be allocated to energy 
transition projects. 

According to the International Energy 
Agency, renewable sources should cover the 
global energy demand for at least 90% by 
2050. Moreover, short- and medium-term 
objectives have been set by the  European 
Commission, and are required to be met by 
2030; Italy, for example, is planning to install 
around 70 GW of renewable energy capacity 
by 2030 in order to reach its objective 
of producing 32% of total energy from 

renewable sources by the end of that year. 
Furthermore, the ambition is to increase 
energy efficiency: predictive maintenance 
could contribute to the achievement of this 
objective, since it allows acting promptly in 
case of anomalies and eventually replacing 
components whose energy efficiency has 
fallen below a certain threshold.

The system developed by U-Hopper 
allowed SAIDEA to detect atypical behavior 
of inverters, and to suggest maintenance 
activities before a major breakdown occurs. 
From the acquisition of data generated by 
IoT-sensors to the prediction of the health 
status for each single inverter, the solution is 
a 360° automated tool, which can be easily 
implemented in other photovoltaic plants, 
even including domestic systems, and 
therefore helping foster the energy transition 
at a more widespread level.
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This solution has been developed in the context of the project “EU FESR1128 PV 4.0 - Use of Industry 4.0 and Internet of Things logic in the 
photovoltaic sector”, which has received funding from the Fondo Europeo di Sviluppo Regionale (FESR) under grant agreement Asse 1 “Ricerca 

e Innovazione”.

https://www.ispionline.it/it/pubblicazione/joe-biden-un-cambio-nelle-politiche-energetiche-e-climatiche-28475
https://www.ispionline.it/it/pubblicazione/joe-biden-un-cambio-nelle-politiche-energetiche-e-climatiche-28475
https://www.euractiv.com/section/energy-environment/news/eu-agrees-to-set-aside-37-of-recovery-fund-for-green-transition/
https://www.iea.org/news/pathway-to-critical-and-formidable-goal-of-net-zero-emissions-by-2050-is-narrow-but-brings-huge-benefits
https://www.iea.org/news/pathway-to-critical-and-formidable-goal-of-net-zero-emissions-by-2050-is-narrow-but-brings-huge-benefits
https://ec.europa.eu/clima/policies/strategies/2030_it
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